Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Sci Rep ; 14(1): 6275, 2024 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-38491188

RESUMO

Hypoxic responses have been implicated in critical pathologies, including inflammation, immunity, and tumorigenesis. Recently, efforts to identify effective natural remedies and health supplements are increasing. Previous studies have reported that the cell lysates and the cell wall-bound lipoteichoic acids of Lactiplantibacillus plantarum K8 (K8) exert anti-inflammatory and immunomodulative effects. However, the effect of K8 on cellular hypoxic responses remains unknown. In this study, we found that K8 lysates had a potent suppressive effect on gene expression under hypoxia. K8 lysates markedly downregulated hypoxia-induced HIF1α accumulation in the human bone marrow and lung cancer cell lines, SH-SY5Y and H460. Consequently, the transcription of known HIF1α target genes, such as p21, GLUT1, and ALDOC, was notably suppressed in the K8 lysate supplement and purified lipoteichoic acids of K8, upon hypoxic induction. Intriguingly, K8 lysates decreased the expression of PHD2 and VHL proteins, which are responsible for HIF1α destabilization under normoxic conditions, suggesting that K8 may regulate HIF1α stability in a non-canonical pathway. Overall, our results suggest that K8 lysates desensitize the cells to hypoxic stresses and suppress HIF1α-mediated hypoxic gene activation.


Assuntos
Neuroblastoma , Humanos , Hipóxia Celular/genética , Linhagem Celular , Hipóxia/metabolismo , Expressão Gênica , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo
2.
Nutrients ; 15(22)2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-38004123

RESUMO

Multiple studies have confirmed that Lactiplantibacillus plantarum has beneficial effects in respiratory diseases, including respiratory tract infections, asthma, and chronic obstructive pulmonary disease. However, the role of L. plantarum lysates in respiratory diseases is unclear. Staphylococcus aureus infects the lungs of mice, recruits immune cells, and induces structural changes in alveoli. Lung diseases can be further aggravated by inflammatory cytokines such as CCL2 and interleukin (IL)-6. In in vivo studies, L. plantarum K8 nanoparticles (K8NPs) restored lung function and prevented lung damage caused by S. aureus infection. They inhibited the S. aureus infection and the infiltration of immune cells and prevented the increase in goblet cell numbers in the lungs of S. aureus-infected mice. K8NPs suppressed the expression of CCL2 and IL-6, which were increased by the combination treatment of tumor necrosis factor alpha and interferon gamma (TI), in a dose-dependent manner. In in vitro studies, the anti-inflammatory effect of K8NPs in TI-treated A549 cells and TI-injected mice occurred through the reduction in activated mitogen-activated protein kinases and nuclear factor kappa-B. These findings suggest that the efficacy of K8NPs in controlling respiratory inflammation and infection can be used to develop functional materials that can prevent or alleviate respiratory diseases.


Assuntos
Lactobacillus plantarum , Pneumonia , Infecções Respiratórias , Infecções Estafilocócicas , Animais , Camundongos , Fator de Necrose Tumoral alfa/metabolismo , Interferon gama/metabolismo , Staphylococcus aureus , Citocinas/metabolismo , Pneumonia/prevenção & controle , Interleucina-6/metabolismo , Infecções Respiratórias/prevenção & controle , Lactobacillus plantarum/metabolismo
3.
Microbiol Immunol ; 67(10): 456-467, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37525428

RESUMO

Defensins and inflammation are innate immune barriers of the body against infectious pathogens. Searching for a compound that can inhibit infectious diseases by affecting human ß-defensin (HBD) and proinflammatory cytokines is the new trend in research to control bacterial infection. The aim of this study is to provide a natural compound, Filipendula glaberrima Nakai extract (FGE), which is able to induce the expression of an antimicrobial defensin as well as reduce inflammation. FGE induced the expression of HBD2 and HBD3 through activating both p38 and NF-κB signaling pathways. Furthermore, FGE inhibited the expression of TNF-α and IL-6 via p38 and NF-κB pathways in Staphylococcus aureus-stimulated THP1 cells. Injection of FGE alleviated cutaneous erythema and swelling caused by S. aureus injection in mice ears. Taken together, FGE could reduce bacterial infection by inducing the expression of defensin and anti-inflammatory activity.


Assuntos
Infecções Bacterianas , Filipendula , beta-Defensinas , Animais , Camundongos , Humanos , NF-kappa B/metabolismo , Células Cultivadas , Staphylococcus aureus , beta-Defensinas/metabolismo , Inflamação/tratamento farmacológico
4.
Molecules ; 28(6)2023 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-36985716

RESUMO

Both defensin and inflammation are part of the human innate immune system that responds rapidly to pathogens. The combination of defensins with pro- or anti-inflammatory effects can be a potential research direction for the treatment of infection by pathogens. This study aimed to identify whether MSF (Miracle Synergy material made using Filipendula glaberrima), a probiotic lysate of Filipendula glaberrima extracts fermented with Lactiplantibacillus plantarum K8, activates the expression of human ß-defensin (HBD2 and HBD3) to protect the host against pathogens and inhibit inflammation caused by S. aureus, in vitro with Western blot analysis, qRT-PCR and in vivo studies with a mouse model were used to evaluate the effects of MSF. The MSF treatment induced HBD2 and HBD3 expression via the p38 and NF-κB pathways. Furthermore, MSF treatment significantly reduced the expression of pro-inflammatory cytokines (TNF-α, IL-1ß, IL-6, and IL-8), also through p38 and NF-κB in S. aureus-induced inflammatory condition. MSF treatment remarkably reduced erythema in mice ears caused by the injection of S. aureus, while K8 lysate treatment did not initiate a strong recovery. Taken together, MSF induced the expression of HBD2 and HDB3 and activated anti-inflammatory activity more than the probiotic lysates of L. plantarum K8. These findings show that MSF is a potential defensin inducer and anti-inflammatory agent.


Assuntos
NF-kappa B , beta-Defensinas , Animais , Camundongos , Humanos , NF-kappa B/metabolismo , beta-Defensinas/metabolismo , Peptídeos Antimicrobianos , Staphylococcus aureus , Células Cultivadas , Transdução de Sinais , Inflamação/tratamento farmacológico
5.
Heliyon ; 9(1): e12926, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36699277

RESUMO

Probiotics exert anti-obesity effects in high-fat diet (HFD) obese mice, but there are few studies on anti-obesity using heat-killed probiotics. Here, we investigated the effect of heat-killed Lactiplantibacillus plantarum K8 (K8HK) on the anti-differentiation of 3T3-L1 preadipocytes and on anti-obesity in HFD mice. K8HK decreased triglyceride (TG) accumulation in 3T3-L1 cells. Specifically, 1 × 109 CFU/mL K8HK showed the greatest anti-obesity effect, while the same concentration of live L. plantarum K8 (K8 Live) showed cytotoxicity. K8HK increased suppressor of cytokine signaling (SOCS)-1, which might affect the JAK2-STAT3 signaling pathway activated during differentiation. As a result, the levels of transcription factors of adipogenesis such as Peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT/enhancer binding protein α (C/EBPα) decreased in K8HK-treated cells. We also observed a decrease in the lipogenic enzymes and fatty acid binding protein 4 (FABP4). In the mouse study, oral ingestion of K8 Live and K8HK showed weight reduction and decrease in blood TG content at 12 weeks of feeding. In addition, TG synthesis was suppressed in liver and adipose tissues, and genes related to fat metabolism were suppressed. This study suggests that K8HK could be a good material to prevent obesity by inhibiting adipogenesis genes related to fat metabolism.

6.
J Microbiol Immunol Infect ; 55(1): 36-43, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33558048

RESUMO

Lipoteichoic acid isolated from Staphylococcus aureus (aLTA) is known to regulate the production of pro-inflammatory cytokines through TLR2-mediated signaling pathways. In our previous study, we found that aLTA significantly increased manganese superoxide dismutase (MnSOD) in the THP-1 human monocyte-like cell line, but the role of MnSOD in the regulation of cytokine production was not elucidated. In the current study, we found that MnSOD was involved in aLTA-mediated cytokine production. The signaling pathways associated with aLTA-mediated MnSOD induction in THP-1 cells included TLR2-MyD88-IRAK2, JNK (c-Jun N-terminal kinases)1/2 and nuclear factor- κB (NF-κB). We also found MnSOD was involved in the regulation of IL-1ß and TNF-α, which were induced by early signaling pathways, including JNK1/2, p38, and NF-κB p65. In addition, MnSOD was also involved in the production of IL-6 and CCL2 in aLTA-stimulated THP-1 cells through activation of late signaling pathways such as JAK2-STAT3. Taken together, our data suggest that aLTA-mediated MnSOD production involved in the regulation of cytokine production and it may be the cause of one of the excessive inflammatory reactions caused by S. aureus.


Assuntos
Citocinas , Staphylococcus aureus , Citocinas/metabolismo , Humanos , Lipopolissacarídeos , Staphylococcus aureus/metabolismo , Superóxido Dismutase , Células THP-1 , Ácidos Teicoicos
7.
Int J Mol Sci ; 22(11)2021 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-34072918

RESUMO

We previously showed that Lactiplantibacillus plantarum K8 and its cell wall components have immunoregulatory effects. In this study, we demonstrate that pre-treatment of L. plantarum K8 lysates reduced LPS-induced TNF-α production in THP-1 cells by down-regulating the early signals of mitogen-activated protein kinase (MAPK) and nuclear factor-κB (NF-κB). The down-regulation of signals may be caused by the induction of negative regulators involved in toll-like receptor (TLR)-mediated signaling. However, co-treatment with high concentrations of L. plantarum K8 lysates and lipopolysaccharide (LPS) activated the late signaling of extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and NF-κB pathways and resulted in the induction of absent in melanoma 2 (AIM2) inflammasome-mediated interleukin (IL)-1ß secretion. Intraperitoneal injection of L. plantarum K8 lysates in LPS-induced endotoxin shock mice alleviated mortality and reduced serum tumor-necrosis factor (TNF)-α, IL-1ß, aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels. In addition, the mRNA levels of TNF-α, IL-1ß, and IL-6 decreased in livers from mice injected with L. plantarum K8 followed by LPS. Hematoxylin and eosin (H&E) staining of the liver showed that the cell size was enlarged by LPS injection and slightly reduced by L. plantarum K8 lysate pre-injection followed by LPS injection. Macrophage infiltration of the liver also decreased in response to the combination injection compared with mice injected with only LPS. Taken together, our results show that although L. plantarum K8 lysates differentially regulated the production of LPS-induced inflammatory cytokines in THP-1 cells, the lysates inhibited overall inflammation in mice. Thus, this study suggests that L. plantarum K8 lysates could be developed as a substance that modulates immune homeostasis by regulating inflammation.


Assuntos
Inflamação/genética , Lactobacillaceae/química , Fígado/efeitos dos fármacos , Choque Séptico/genética , Animais , Proteínas de Ligação a DNA/genética , Endotoxinas/toxicidade , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Inflamação/induzido quimicamente , Inflamação/patologia , Interleucina-1beta/genética , Interleucina-6/genética , Proteínas Quinases JNK Ativadas por Mitógeno/genética , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/toxicidade , Fígado/metabolismo , Fígado/patologia , Camundongos , NF-kappa B/genética , Choque Séptico/induzido quimicamente , Choque Séptico/patologia , Fator de Necrose Tumoral alfa/genética
8.
Microorganisms ; 9(6)2021 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-34074052

RESUMO

Staphylococcus aureus inhibits complement activity by secreting a variety of toxins. However, the underlying mechanism of complement component regulation by lipoteichoic acid (LTA), a cell wall component of S. aureus, has not been elucidated. In this study, we observed that aLTA (LTA of S. aureus) increased C3 expression in THP-1 cells. The mechanism of aLTA-mediated C3 induction includes an aLTA-toll-like receptor (TLR) 2 interaction, interleukin 1 receptor associated kinase (IRAK) 2 recruitment, and nuclear factor kappa B (NF-kB) activation. In HepG2 cells, C3 protein production begins to increase from 3 h and increases steadily until 48 h. On the other hand, CD55 levels increased up to 6 h after aLTA treatment and started to decrease after 24 h and levels were decreased at 48 h by more than 50% compared to untreated cells. The expression of CD55 in HepG2 cells was shown to be regulated by IRAK-M induced by aLTA. Serum C3 levels increased in mice injected with aLTA, which resulted in an increase in the amount and activity of the membrane attack complex (MAC). We also observed that CD55 mRNA was increased in the liver 24 h after aLTA injection, but was decreased 48 h after injection. These results suggest that aLTA increases complement levels via induction of C3 and inhibition of CD55, which may cause associated MAC-mediated liver damage.

9.
Int J Mol Sci ; 22(8)2021 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-33924622

RESUMO

Staphylococcus aureus is a species of Gram-positive staphylococcus. It can cause sinusitis, respiratory infections, skin infections, and food poisoning. Recently, it was discovered that S. aureus infects epithelial cells, but the interaction between S. aureus and the host is not well known. In this study, we confirmed S. aureus to be internalized by HaCaT cells using the ESAT-6-like protein EsxB and amplified within the host over time by escaping host immunity. S. aureus increases the expression of decay-accelerating factor (CD55) on the surfaces of host cells, which inhibits the activation of the complement system. This mechanism makes it possible for S. aureus to survive in host cells. S. aureus, sufficiently amplified within the host, is released through the initiation of cell death. On the other hand, the infected host cells increase their surface expression of UL16 binding protein 1 to inform immune cells that they are infected and try to be eliminated. These host defense systems seem to involve the alteration of tight junctions and the induction of ligand expression to activate immune cells. Taken together, our study elucidates a novel aspect of the mechanisms of infection and immune system evasion for S. aureus.


Assuntos
Antígenos CD55/metabolismo , Ativação do Complemento , Staphylococcus aureus/fisiologia , Animais , Proteínas de Bactérias/metabolismo , Morte Celular , Endocitose , Células HaCaT , Interações Hospedeiro-Patógeno , Humanos , Masculino , Camundongos Endogâmicos BALB C , Proteínas de Junções Íntimas/metabolismo , Junções Íntimas/metabolismo , Regulação para Cima/genética
10.
Microb Pathog ; 147: 104360, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32736014

RESUMO

Lipoteichoic acid (LTA), a cell wall component of gram-positive bacteria, up-regulates inflammatory cytokine production through the toll-like receptor 2 (TLR2) signaling pathway, and also contributes to anti-inflammatory responses against immune cells stimulated by lipopolysaccharides. In the current study, we examined the effects of LTAs isolated from Staphylococcus aureus (aLTA) and Lactobacillus plantarum (pLTA) on the aggravation and alleviation of atopic dermatitis (AD). aLTA strongly induced CCL2 production in THP-1 cells. CCL2 was regulated by the TLR2 pathway including the activation of IRAK2, NF-κB and JNK. CCL2 induced Th2 polarization of CD4+T cells through induction of interleukin (IL)-2, -4, and -5 and inhibition of interferon-gamma (IFN-γ). CCL2 levels and immunoglobulin E (IgE) production were increased in aLTA-injected mice. On the other hand, pLTA moderately affected CCL2 production and it inhibited aLTA-mediated CCL2 production. The serum levels of CCL2 and IgE were inhibited by pLTA pre-injection followed by aLTA reinjection, which resulted in the alleviation of irritant contact dermatitis (ICD) symptoms. Our results suggest that S. aureus infection causes an increase in CCL2 production, and may exacerbate atopic dermatitis (AD)-like symptoms through the excessive IgE production. Alternatively, pLTA alleviated AD-like symptoms by inhibiting aLTA-induced CCL2 and IgE production.


Assuntos
Dermatite Atópica , Lactobacillus plantarum , Animais , Lipopolissacarídeos , Camundongos , Staphylococcus aureus , Ácidos Teicoicos
11.
Immunol Lett ; 214: 23-29, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31454521

RESUMO

The innate immune complement system helps clear invading pathogens by forming membrane attack complexes (MACs) on their surface. Abnormal activation of the complement system may aggravate atopic dermatitis (AD) symptoms in AD patients. Here, we investigated the anti-AD effects of LTAs isolated from Lactobacillus plantarum (pLTA) and Staphylococcus aureus (aLTA) by examination of complement regulatory proteins (CRPs). Combination treatment with pLTA and aLTA increased CD55 and CD59 production in HaCaT cells. The regulation of CD55 and CD59 was mediated by p38 mitogen-activated protein kinase (p38) signaling pathways in pLTA- and aLTA-treated cells. Complement-dependent cytotoxicity (CDC) and bactericidal assays revealed that combination treatment with pLTA and aLTA down-regulated the complement system. In experiments using an irritant contact dermatitis (ICD)-induced mouse model, the levels of MAC and C3 convertase (C3C) were lower in serum collected from pLTA- and aLTA-injected mice than in serum from mice who were untreated or received pLTA or aLTA alone. Combination treatment also inhibited IgE and CCL2 levels in ICD mice. On the other hand, IFN-γ level was significantly increased, indicating that combination treatment switches the Th2 response to a Th1 response. Our results suggest that combination treatment with LTAs could be a good therapeutic approach to alleviate AD by reducing formation of MACs and inducing a Th1 response.


Assuntos
Antígenos CD55/imunologia , Antígenos CD59/imunologia , Dermatite Atópica , Lactobacillus plantarum/química , Lipopolissacarídeos , Staphylococcus aureus/química , Ácidos Teicoicos , Regulação para Cima/efeitos dos fármacos , Animais , Linhagem Celular , Dermatite Atópica/tratamento farmacológico , Dermatite Atópica/imunologia , Dermatite Atópica/patologia , Humanos , Lipopolissacarídeos/química , Lipopolissacarídeos/isolamento & purificação , Lipopolissacarídeos/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Ácidos Teicoicos/química , Ácidos Teicoicos/isolamento & purificação , Ácidos Teicoicos/farmacologia
12.
Toxins (Basel) ; 11(5)2019 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-31027358

RESUMO

Bee venom (BV)-a complex mixture of peptides and toxic proteins including phospholipase A2 and melittin-promotes blood clotting. In this study, we investigated the anti-atopic properties of BV and the mechanism associated with its regulation of the complement system. BV treatment upregulated the mRNA and protein levels of CD55 in THP-1 cells. Further experiments revealed that the phosphorylation of ERK was associated with upregulation of CD55. A complement-dependent cytotoxicity assay and a bacteria-killing assay showed that BV inactivated the complement system through the induction of CD55. The serum levels of C3 convertase (C3C) and Membrane attack complex (MAC) increased, while CD55 decreased in mice with AD-like lesions from DNCB treatment. However, the levels were inverted when the AD-like mice were treated with BV using subcutaneous injection, and we observed that the AD symptoms were alleviated. BV is often used to treat AD but its mechanism has not been elucidated. Here, we suggest that BV alleviates AD through the inactivation of the complement system, especially by the induction of CD55.


Assuntos
Anti-Inflamatórios/uso terapêutico , Venenos de Abelha/uso terapêutico , Antígenos CD55/metabolismo , Dermatite Atópica/tratamento farmacológico , Animais , Anti-Inflamatórios/farmacologia , Venenos de Abelha/farmacologia , Antígenos CD55/genética , Linhagem Celular , Convertases de Complemento C3-C5/metabolismo , Complexo de Ataque à Membrana do Sistema Complemento/metabolismo , Dermatite Atópica/genética , Dermatite Atópica/metabolismo , Escherichia coli/efeitos dos fármacos , Humanos , Masculino , Camundongos Endogâmicos BALB C , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Regulação para Cima/efeitos dos fármacos
13.
J Microbiol Biotechnol ; 29(1): 151-159, 2019 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-30415531

RESUMO

Lipoteichoic acid isolated from Lactobacillus plantarum K8 (pLTA) alleviates lipopolysaccharide (LPS)-induced excessive inflammation through inhibition of TNF-α and interleukin (IL)-6. In addition, pLTA increases the survival rate of mice in a septic shock model. In the current study, we have found that pLTA contributes to homeostasis through regulation of pro- and anti-inflammatory cytokine production. In detail, pLTA decreased the production of IL-10 by phorbol-12-myristate-13-acetate (PMA)-differentiated THP-1 cells stimulated with prostaglandin E2 (PGE-2) and LPS. However, TNF-α production which was inhibited by PGE-2+LPS increased by pLTA treatment. The regulatory effects of IL-10 and TNF-α induced by PGE-2 and LPS in PMA-differentiated THP-1 cells were mediated by pLTA, but not by other LTAs isolated from either Staphylococcus aureus (aLTA) or L. sakei (sLTA). Further studies revealed that pLTA-mediated IL-10 inhibition and TNF-α induction in PGE-2+LPS-stimulated PMA-differentiated THP-1 cells were mediated by dephosphorylation of p38 and phosphorylation of c-Jun N-terminal kinase (JNK), respectively. Reduction of pLTA-mediated IL-10 inhibited the metastasis of breast cancer cells (MDA-MB-231), which was induced by IL-10 or conditioned media prepared from PGE-2+LPS-stimulated PMA-differentiated THP-1 cells. Taken together, our data suggest that pLTA contributes to inflammatory homeostasis through induction of repressed pro-inflammatory cytokines as well as inhibition of excessive anti-inflammatory cytokines.


Assuntos
Inflamação/prevenção & controle , Lactobacillus plantarum/química , Lipopolissacarídeos/farmacologia , Ácidos Teicoicos/farmacologia , Equilíbrio Th1-Th2/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Inflamação/induzido quimicamente , Inflamação/metabolismo , Interleucina-10/antagonistas & inibidores , Interleucina-10/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Fosforilação/efeitos dos fármacos , Especificidade da Espécie , Fator de Necrose Tumoral alfa/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
14.
J Microbiol ; 56(12): 910-916, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30484159

RESUMO

Zizania latifolia is a perennial herb belonging to the family Gramineae that has been used as a health food in Asian countries. In this study, we investigated the antimicrobial effect of Z. latifolia, which increased human beta-defensin 2 (hBD2) expression in HaCaT cells. hBD2 expression was further increased in cells treated with Z. latifolia extracts and subsequently infected with Staphylococcus aureus. Inversely, S. aureus infection decreased after treatment. The induction of hBD2 in HaCaT cells was mediated by the Toll-like receptor 2 (TLR2) signaling pathway, including the activation of extracellular signal-regulated kinase (ERK) and activator protein 1 (AP-1). Further study using siRNA revealed that hBD2 played an important role in the inhibition of S. aureus infection in HaCaT cells. Our data suggest that Z. latifolia extracts can be used as an antimicrobial ingredient for skin treatment formulas.


Assuntos
Antibacterianos/farmacologia , Extratos Vegetais/farmacologia , Poaceae/química , Infecções Cutâneas Estafilocócicas/terapia , Staphylococcus aureus/efeitos dos fármacos , beta-Defensinas/metabolismo , Linhagem Celular/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Imunidade Inata/efeitos dos fármacos , RNA Interferente Pequeno , Transdução de Sinais , Receptor 2 Toll-Like/metabolismo , Fator de Transcrição AP-1/metabolismo , Água , beta-Defensinas/efeitos dos fármacos
16.
J Microbiol Biotechnol ; 27(10): 1820-1826, 2017 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-28764320

RESUMO

Lipoteichoic acid (LTA), a cell wall component of gram-positive bacteria, is recognized by Toll-like receptor 2, expressed on certain mammalian cell surfaces, initiating signaling cascades that include nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and mitogen-activated protein kinase. There are many structural and functional varieties of LTA, which vary according to the different species of gram-positive bacteria that produce them. In this study, we examined whether LTA isolated from Staphylococcus aureus (aLTA) affects the expression of junction proteins in keratinocytes. In HaCaT cells, tight junction-related gene expression was not affected by aLTA, whereas adherens junction-related gene expression was modified. High doses of aLTA induced the phosphorylation of extracellular signal-regulated protein kinases 1 and 2, which in turn induced the epithelial-mesenchymal transition (EMT) of HaCaT cells. When cells were given a low dose of aLTA, however, NF-κB was activated and the total cell population increased. Taken together, our study suggests that LTA from S. aureus infections in the skin may contribute both to the outbreak of EMT-mediated carcinogenesis and to the genesis of wound healing in a dose-dependent manner.


Assuntos
Transição Epitelial-Mesenquimal/efeitos dos fármacos , Lipopolissacarídeos/isolamento & purificação , Lipopolissacarídeos/farmacologia , Staphylococcus aureus/metabolismo , Ácidos Teicoicos/isolamento & purificação , Ácidos Teicoicos/farmacologia , Cicatrização/efeitos dos fármacos , Linhagem Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Humanos , Queratinócitos , Lipopolissacarídeos/administração & dosagem , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , NF-kappa B/metabolismo , Fosforilação , RNA Mensageiro/biossíntese , Transdução de Sinais , Dermatopatias/microbiologia , Infecções Estafilocócicas/metabolismo , Staphylococcus aureus/patogenicidade , Ácidos Teicoicos/administração & dosagem , Receptor 2 Toll-Like/metabolismo
17.
J Immunol ; 197(4): 1127-36, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-27357152

RESUMO

CD55/DAF, one of the regulators of complement activation, is known to limit excess complement activation on the host cell surface by accelerating the decay of C3 convertase. We reported previously that hepatitis C virus (HCV) infection or virus core protein expression upregulates CD55 expression. CD55 associates with HCV particles, potentially protecting HCV from lysis in circulation. An increase in CD55 on the surface of HCV-infected cells may inhibit complement-mediated cell killing. In this study, we show that Abs against cancer cell surface proteins induce complement-dependent cytolysis or Ab-dependent cell-mediated cytotoxicity of immortalized human hepatocytes in the presence of CD55-blocking Ab. CD55 has a secreted isoform (sCD55) that is generated by alternative splicing. We observed that sCD55 is induced in HCV-infected or HCV replicon-harboring cells, as well as in liver biopsy samples from chronically HCV-infected patients. Conditioned medium from HCV-infected hepatoma cells (Huh7.5 cells) or immortalized human hepatocytes inhibited C3 convertase activity and complement-dependent cytolysis of sheep blood erythrocytes. Chronically HCV-infected patient sera inhibited C3 convertase activity, further implicating HCV-specific impairment of complement function in infected humans. CD55-blocking Ab inhibited erythrocyte lysis by conditioned medium, suggesting that CD55/sCD55 impairs convertase activity. Together, our data show that HCV infection induces sCD55 expression in HCV-infected cell culture-conditioned medium and inhibits C3 convertase activity. This may have implications for modulating complement-mediated immune function in the microenvironment and on HCV-harboring cells.


Assuntos
Antígenos CD55/metabolismo , Ativação do Complemento/fisiologia , Citotoxicidade Imunológica/imunologia , Hepatite C/imunologia , Antígenos CD55/imunologia , Convertases de Complemento C3-C5/metabolismo , Meios de Cultivo Condicionados/farmacologia , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Hepacivirus , Hepatócitos/imunologia , Hepatócitos/virologia , Humanos , Reação em Cadeia da Polimerase , Isoformas de Proteínas
18.
J Microbiol Biotechnol ; 26(9): 1517-26, 2016 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-27221109

RESUMO

Lactic acid bacteria (LAB) isolated from fermented foods have potential as a treatment for immune-related disorders and the use of LAB has been increasing worldwide. In this study, the differential cytokine regulatory effect was examined with three isolates of lactobacilli strains; namely, Lactobacillus plantarum K55-5 isolated from dairy product, and L. sakei K101 and L. plantarum K8 previously isolated from kimchi (a Korean traditional fermented vegetable). Production of cytokines such as IL-10, IL-12, IFN-γ, and TNF-α was significantly increased in L. sakei K101- and L. plantarum K55-5-treated splenocytes as compared with controls. The oral administration of L. sakei K101 and L. plantarum K55-5 increased cytokine production in the immunosuppressed mouse splenocytes and blood. NK cell cytotoxic activity was also increased in L. sakei K101- and L. plantarum K55-5-fed mice. On the other hand, L. plantarum K8 did not affect cytokine induction in all the experiments performed in this study. The cytokine-inducing effect of L. plantarum K55-5 was significantly increased by lysates of heat-killed bacteria as compared with live, heat-killed, or supernatant of cell lysates. TNF-α production by lipoteichoic acids (LTAs) isolated from the three isolates of lactobacilli was compared, and it was found that K55-5 LTA had a highest cytokine-inducing ability, which was mediated by TLR2-mediated NF-κB and ERK activation. Taken together, our study suggests that L. plantarum K55-5 and L. sakei K101 can be used for the treatment of immunosuppressed disorders.


Assuntos
Produtos Fermentados do Leite/microbiologia , Citocinas , Sistema Imunitário/efeitos dos fármacos , Lactobacillus/fisiologia , Probióticos/farmacologia , Animais , Citocinas/análise , Citocinas/imunologia , Citocinas/metabolismo , Feminino , Microbiologia de Alimentos , Sistema Imunitário/imunologia , Sistema Imunitário/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Células RAW 264.7 , República da Coreia , Transdução de Sinais
19.
FEMS Microbiol Lett ; 363(14)2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27231239

RESUMO

Complement component 3 (C3) is one of the proteins associated with complement cascades. C3 plays an essential role in three different pathways-the alternative, classical and lectin pathways. It is well known that cytokines activate complement system and increase complement component C3 production. In the current study, we found that lipoteichoic acid isolated from Lactobacillus plantarum K8 (pLTA) inhibited tumor necrosis factor-alpha (TNF-α) or interferon-gamma (IFN-γ)-mediated C3 mRNA and protein expression in HaCaT cells. pLTA inhibited C3 expression through the inhibition of the phosphorylation of p65 and p38 in the TNF-α-treated cells, while the inhibition of STAT1/2 and JAK2 phosphorylation by pLTA contributed to the reduction of C3 in IFN-γ-treated cells. When mice were pre-injected with pLTA followed by re-injection of TNF-α, serum C3 level was decreased as compared to TNF-α-injected only. Further studies revealed that membrane attack complex (MAC) increased by TNF-α injection was lessened in pLTA-pre-injected mice. A bactericidal assay using mouse sera showed that MAC activity in pLTA-pre-injected mice was lower than in TNF-α only-injected mice. These results suggest that pLTA can suppress inflammatory cytokine-mediated complement activation through the inhibition of C3 synthesis. pLTA application has the potential to alleviate complement-mediated diseases caused by excessive inflammation.


Assuntos
Ativação do Complemento/imunologia , Complemento C3/imunologia , Citocinas/metabolismo , Infecções por Bactérias Gram-Positivas/imunologia , Infecções por Bactérias Gram-Positivas/microbiologia , Lactobacillus plantarum/imunologia , Lipopolissacarídeos/imunologia , Ácidos Teicoicos/imunologia , Animais , Linhagem Celular , Complemento C3/genética , Complexo de Ataque à Membrana do Sistema Complemento/imunologia , Complexo de Ataque à Membrana do Sistema Complemento/metabolismo , Expressão Gênica , Infecções por Bactérias Gram-Positivas/genética , Infecções por Bactérias Gram-Positivas/metabolismo , Humanos , Interferon gama/metabolismo , Masculino , Camundongos , RNA Mensageiro/genética , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismo
20.
PLoS One ; 11(4): e0154302, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27120199

RESUMO

Lactobacillus acidophilus species are well-known probiotics with the beneficial activity of regulating cholesterol levels. In this study, we showed that L. acidophilus K301 reduced the level of cholesterol through reverse transport in macrophages. L. acidophilus K301 upregulated the mRNA and protein levels of genes such as ATP-binding cassette A1 (ABCA1) and ATP-binding cassette G1 (ABCG1) under the control of liver X receptor (LXR), resulting in increased apoA-I-dependent cholesterol efflux in phorbol 12-myristate 13-acetate (PMA)-differentiated THP-1 cells. L. acidophilus K301 induced both ABCA1 and ABCG1 through the endogenous LXR agonist 24(S), 25-epoxcycholesterol, which is synthesized by intracellular cholesterol synthetic pathways. In vivo studies using L. acidophilus K301-treated ApoE-/- mice showed reduced accumulation of lipoproteins in the arterial lumen. The inhibitory effects of L. acidophilus K301 on accumulation of lipoprotein in atherosclerotic plaques were mediated by the induction of squalene reductase (SQLE) and oxidosqualene cyclase (OSC) and resulted in ABCA1-mediated cholesterol efflux. Taken together, our findings revealed that Lactobacillus acidophilus K301 regulates the expression of genes related to cholesterol reverse transport via the induction of endogenous LXR agonist, suggesting the therapeutic potential of Lactobacillus acidophilus K301 as an anti-atherosclerotic agent.


Assuntos
Transportador 1 de Cassete de Ligação de ATP/metabolismo , Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Aterosclerose/prevenção & controle , Colesterol/análogos & derivados , Lactobacillus acidophilus/fisiologia , Placa Aterosclerótica/prevenção & controle , Probióticos/farmacologia , Transportador 1 de Cassete de Ligação de ATP/genética , Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Animais , Apolipoproteína A-I/genética , Apolipoproteína A-I/metabolismo , Apolipoproteínas E/deficiência , Apolipoproteínas E/genética , Aterosclerose/genética , Aterosclerose/metabolismo , Aterosclerose/patologia , Transporte Biológico , Linhagem Celular , Colesterol/metabolismo , Farnesil-Difosfato Farnesiltransferase/genética , Farnesil-Difosfato Farnesiltransferase/metabolismo , Regulação da Expressão Gênica , Células HEK293 , Humanos , Transferases Intramoleculares/genética , Transferases Intramoleculares/metabolismo , Receptores X do Fígado/genética , Receptores X do Fígado/metabolismo , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Camundongos Knockout , Placa Aterosclerótica/genética , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/patologia , Transdução de Sinais , Acetato de Tetradecanoilforbol/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA